Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
3.
Viruses ; 14(5)2022 05 17.
Article in English | MEDLINE | ID: covidwho-1903486

ABSTRACT

The role of environmental transmission of SARS-CoV-2 remains unclear. Thus, the aim of this study was to investigate whether viral contamination of air, wastewater, and surfaces in quarantined households result in a higher risk for exposed persons. For this study, a source population of 21 households under quarantine conditions with at least one person who tested positive for SARS-CoV-2 RNA were randomly selected from a community in North Rhine-Westphalia in March 2020. All individuals living in these households participated in this study and provided throat swabs for analysis. Air and wastewater samples and surface swabs were obtained from each household and analysed using qRT-PCR. Positive swabs were further cultured to analyse for viral infectivity. Out of all the 43 tested adults, 26 (60.47%) tested positive using qRT-PCR. All 15 air samples were qRT-PCR-negative. In total, 10 out of 66 wastewater samples were positive for SARS-CoV-2 (15.15%) and 4 out of 119 surface samples (3.36%). No statistically significant correlation between qRT-PCR-positive environmental samples and the extent of the spread of infection between household members was observed. No infectious virus could be propagated under cell culture conditions. Taken together, our study demonstrates a low likelihood of transmission via surfaces. However, to definitively assess the importance of hygienic behavioural measures in the reduction of SARS-CoV-2 transmission, larger studies should be designed to determine the proportionate contribution of smear vs. droplet transmission.


Subject(s)
COVID-19 , Quarantine , Adult , COVID-19/epidemiology , Humans , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Wastewater
4.
Viruses ; 14(5):1075, 2022.
Article in English | MDPI | ID: covidwho-1857137

ABSTRACT

The role of environmental transmission of SARS-CoV-2 remains unclear. Thus, the aim of this study was to investigate whether viral contamination of air, wastewater, and surfaces in quarantined households result in a higher risk for exposed persons. For this study, a source population of 21 households under quarantine conditions with at least one person who tested positive for SARS-CoV-2 RNA were randomly selected from a community in North Rhine-Westphalia in March 2020. All individuals living in these households participated in this study and provided throat swabs for analysis. Air and wastewater samples and surface swabs were obtained from each household and analysed using qRT-PCR. Positive swabs were further cultured to analyse for viral infectivity. Out of all the 43 tested adults, 26 (60.47%) tested positive using qRT-PCR. All 15 air samples were qRT-PCR-negative. In total, 10 out of 66 wastewater samples were positive for SARS-CoV-2 (15.15%) and 4 out of 119 surface samples (3.36%). No statistically significant correlation between qRT-PCR-positive environmental samples and the extent of the spread of infection between household members was observed. No infectious virus could be propagated under cell culture conditions. Taken together, our study demonstrates a low likelihood of transmission via surfaces. However, to definitively assess the importance of hygienic behavioural measures in the reduction of SARS-CoV-2 transmission, larger studies should be designed to determine the proportionate contribution of smear vs. droplet transmission.

5.
Nat Biotechnol ; 39(12): 1556-1562, 2021 12.
Article in English | MEDLINE | ID: covidwho-1287813

ABSTRACT

Frequent testing of large population groups combined with contact tracing and isolation measures will be crucial for containing Coronavirus Disease 2019 outbreaks. Here we present LAMP-Seq, a modified, highly scalable reverse transcription loop-mediated isothermal amplification (RT-LAMP) method. Unpurified biosamples are barcoded and amplified in a single heat step, and pooled products are analyzed en masse by sequencing. Using commercial reagents, LAMP-Seq has a limit of detection of ~2.2 molecules per µl at 95% confidence and near-perfect specificity for severe acute respiratory syndrome coronavirus 2 given its sequence readout. Clinical validation of an open-source protocol with 676 swab samples, 98 of which were deemed positive by standard RT-qPCR, demonstrated 100% sensitivity in individuals with cycle threshold values of up to 33 and a specificity of 99.7%, at a very low material cost. With a time-to-result of fewer than 24 h, low cost and little new infrastructure requirement, LAMP-Seq can be readily deployed for frequent testing as part of an integrated public health surveillance program.


Subject(s)
COVID-19 Testing/methods , COVID-19 , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , COVID-19/diagnosis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL